

WP2 – ENERGY EFFICIENCY (DIRECT)

Future Focus

Frédéric Bless, NTB Cordin Arpagaus, NTB

FHO Fachhochschule Ostschweiz

In cooperation with the CTI

Swiss Confederation

Commission for Technology and Innovation CTI

- Steam generation
 - Frédéric Bless, NTB
- High temperature heat pumps
 - Cordin Arpagaus, NTB

- Steam generation
- USAGE:
 - Heating
 - Distillation
 - Food drying
 - Carbon activation
 - ...

- Steam generation
- PROCESS: **BOILER**
 - Gas, oil, electricity
 - Efficient

- Steam generation
- PROCESS: HIGH TEMPERATURE HEAT PUMP
 - COP ~ 1 (with heat source of 18°C)

- Steam generation
- PROCESS: STANDARD HEAT PUMP
 - Low pressure

- Steam generation
- PROCESS: LOW-PRESSURE EVAPORATION
 - Low pressure
 - Using waste heat as heat source

Steam generation: RESULTS

Steam generation: RESULTS + 55°C WASTE HEAT

HIGH-TEMPERATURE HEAT PUMP

HIGH TEMPERATURE HEAT PUMP

- Literature Review (Market Overview, Research Status, Refrigerants)
- Demonstrator (System Design, Experimental set-up)
- Future tasks (Review Paper, Conferences, Prototype Experiments)

Development of temperature levels

VHTHP: very high temperature heat pump HTHP: high temperature heat pump

HP: conventional heat pump

(Bobelin et al., 2012; IEA, 2014a; Jakobs and Laue, 2015; Peureux et al., 2012, 2014)

 Theoretical potential for HTHPs in Switzerland

 Technical potential of process heat in Europe accessible with industrial heat pumps

(BFE, 2016; Pulfer and Spirig, 2014)

(based on Eurostat data from 2012 of 33 countries, Nellissen and Wolf, 2015)

Overview of processes in different industrial sectors

(Brunner et al., 2007; Hartl et al., 2015; IEA, 2014b; Kalogirou, 2003; Lambauer et al., 2012; Lauterbach et al., 2012; Noack, 2016; Ochsner, 2015; Rieberer et al., 2015; Watanabe, 2013; Weiss, 2007, 2005; Wolf et al., 2014)

Market overview of HTHPs with supply temperatures >90°C

SCCER EFFICIENCY OF INDUSTRIAL PROCESSES

Commercial HTHPs

SCCER EFFICIENCY OF INDUSTRIAL PROCESSES

Commercial HTHPs

COP vs. temperature lift for various industrial HTWPs

$$COP = 3.9 \pm 0.8$$

 $\Delta T_{Lift} = 57 \pm 15 \text{ K}$

Market overview – Conclusions

- >20 HTHP models with supply temperature >90°C identified from 12 manufacturers, Benchmark: Kobelco SGH120 and Mayekawa Eco Sirocco with 120°C
- **Heat source:** water, brine, waste heat or waste water (17 to 65°C)
- **COP:** 2.4 to 5.8 at a temperature lift of 40 to 95 K
- Heating capacity: from about 20 kW to 20 MW
- **Refrigerants:** R245fa, R717 (NH3), R744 (CO2), R134a, R1234ze(E)
- Compressors: 1- and 2-shaft screws, 2-stage turbochargers, reciprocating compressors (parallel)
- Cycles: usually 1-stage, optimization by IHX, parallel compressors, economizer, intermediate injection, 2-stage cascade (R134a/R245fa) or with a flash economizer

Research activity on HTHPs

Number of publications with search key word «high temperature heat pump» in data bases SCOPUS (www.scopus.com) and Web of Science (www.webofknowledge.com).

Experimental research projects of HTHPs

Organisation, Projektpartner	Kreislauf	Kompressor	Kältemittel	C	Quelle	n- und	d Seni	center	nperat	ur [°C]		Heizleistung [kW]	Referenz
				20	40	60	80	100	120	140 1	60		
Austrian Institute of Technology (AIT), Wien, Chemours, Bitzer	IHX	Hubkolben	R1336mzz-Z									12	(Helminger et al., 2016)
Austrian Institute of Technology (AIT), Wien, Chemours, Bitzer	1-stufig	Hubkolben	R1336mzz-Z									12	(Fleckl et al., 2015a, 2015b)
PACO, University Lyon, EDF Electricité de France	Flash Tank	Doppelschraube	H ₂ O (Wasser)									300	(Chamoun et al., 2014, 2013, 2012a, 2012b)
Institut für Luft- und Kältetechnik (ILK), Dresden	1-stufig	n.v.	HT 125									12	(Noack, 2016)
Friedrich-Alexander Universität Erlangen-Nürnberg, Siemens	IHX	Hubkolben	LG6									10	(Reißner, 2015; Reißner et al., 2013a, 2013b)
Alter ECO, EDF Electricité de France	IHX und Unterkühler	Doppel Scroll	ECO3 (R245fa)	Е								50-200	(Bobelin et al., 2012; IEA, 2014a)
Tokyo Electric Power Company, Japan	1-stufig	Schraube	R601									150-400	(Yamazaki and Kubo, 1985)
Austrian Institute of Technology (AIT), Wien, Edtmayer, Ochsner	Economizer	Schraube	ÖKO1 (R245fa)									250-400	(Wilk et al., 2016b)
Kyushu University, Fukuoka, Japan	1-stufig	Doppelrotations- kompressor (2-stufig)	R1234ze(Z)									1.8	(Fukuda et al., 2014)
Johnson Controls, EDF Electricité de France	Economizer und IHX	Doppelschraube Zentrifugal Turbo	R245fa									300-500 900-1'200	(IEA, 2014a)

SCCER EFFICIENCY OF INDUSTRIAL PROCESSES

Heat pump cycles and COPs

COP vs. supply temperature at different temperature lifts

- Conclusions Research status
- **Sink temperature up to 160°C** at AIT (Vienna), 1-stage with IHX and R1336mzz(Z)
- **10** research projects reached > 100°C
- Heating capacity: laboratory scale 12 kW, larger prototypes >100 kW
- **COPs** (at 120°C supply temperature): 5.7 to 6.5 (30 K temperature lift), 2.2 to 2.8 (70 K)
- **Cycles:** all 1-stage, partly with IHX and/or economizer with intermediate injection
- **Refrigerants:** R1336mzz(Z), R718 (H2O), R245fa, R1234ze (Z), R601, LG6 (Siemens), ÖKO1 (contains R245fa, Ochsner), ECO3 (R245fa, Alter ECO), HT125 (ILK, Dresden)
- Compressors: reciprocating pistons in laboratory systems

Refrigerants – selection criteria

Criteria	Required properties				
Thermal suitability	High critical temperature, low critical pressure				
Environmental	ODP = 0, low GWP, short atmospheric life				
Safety	Non-toxic, non-combustible (safety group A1)				
Efficiency	High COP, low pressure ratio, minimal overheat to prevent fluid				
	compression, high volumetric capacity				
Availability	Available in the market, low price				
Other factors	Good solubility in oil, thermal stability of the refrigerant-oil mixture,				
	lubricating properties at high temperatures, material compatibility				
	with steel and copper				

	T_krit	p_krit	ODP	GWP	SG	M
	[°C]	[bar]	[-]	[-]		[g/mol]
n-pentane	196.6	33.7	0	20	A3	72.2
R365mfc	186.9	32.7	0	804	A2	148.1
R123	183.7	37.0	0.02	77	B1	152.9
R1233zd(E)	166.5	36.2	0.0003	6	A1	130.5
Novec649	168.7	18.7	0	1	A1	316.0
R245fa	154.0	36.5	0	858	B1	134.0
R1234ze(Z)	150.1	35.3	0	<1	A2	114.0
R600	152.0	38.0	0	20	A3	58.1
Water	373.9	220.6	0	0	A1	18.0
R1336mzz-Z	171.3	29.0	0	9	A1	164.1

Concept for HTHP laboratory prototype

HFO refrigerants

■ Experimental test setup – HTHP laboratory prototype (Aug 25, 2017)

- Next steps (Sept 2017-2018)
- Review paper on High Temperature Heat Pumps
- Experimental HTHP test setup (instrumentation and testing)
- Conference Papers (HTHP Design, Simulation, Experimental Results)

Discussion (10 min)

Sources:

[1]: E. Federal Department of Economic Affairs, Research, Natural gas price, (http://gaspreise.preisueberwacher.ch/web/index.asp?z=5&codekategorie=Typ%20VI) (Apr 2016).

[2]: F. E. C. ElCom, Comparison of electricity prices, (May 2016) https://www.strompreis.elcom.admin.ch/Map/ShowSwissMap.aspx