Polymerisation of Acrylic Acid using atmospheric plasma jets

Group meeting 1 23th of May 2014

Outline

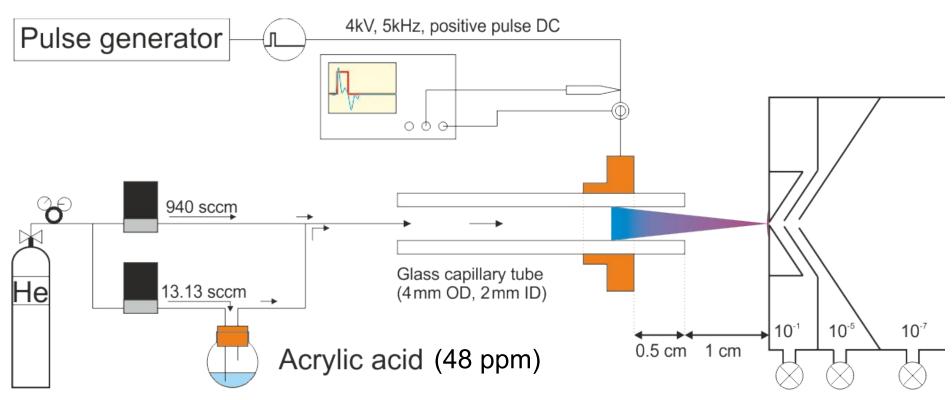
- Acrylic acid
- **Experimental Setup**
- Mass spectrometry

 - Time-averaged Objective:
- Polymerise acrylic acid using a Deposition 4. atmospheric plasma jet.
 - **XPS** a.
 - Deposit poly(acrylic) coating **TOF-SIMS**
- 5. Future
 - Frequency & duty cycle
 - Deposition b.
 - Monomer

Acrylic acid and its polymer

Acrylic acid (AA):

AA is a standard monomer being produced for over 30 Years.


AA **coatings** are used for: hydrophilic properties, good adhesion to metallic surface, sensor technologies, protein and cell adhesion,...

These properties mainly come from the **-COOH** group

Acrylic acid: $C_3H_4O_2$ (72 amu)

Poly(acrylic acid): $n[C_3H_4O_2]$ (72n amu)

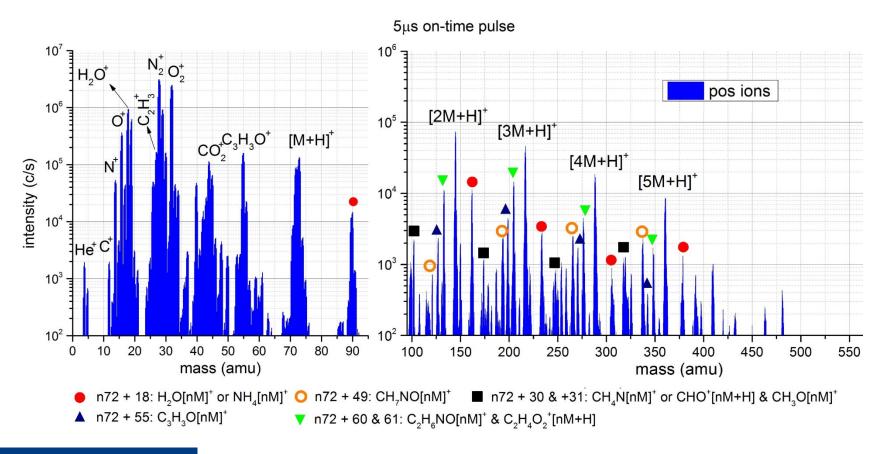
Experimental setup

Grade A Helium 99.996%, BOC

Homemade power supply & copper electrode

Flow controller, MKS

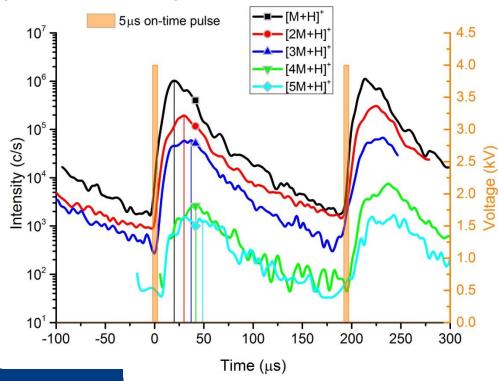
Quartz tube, Robson Scientific


Acrylic acid 99%, Sigma-Aldrich

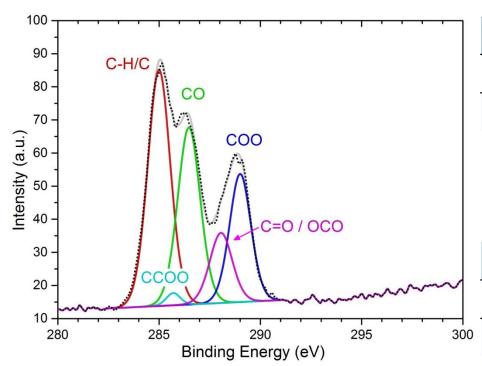
HPR-60 molecular beam mass spectrometer, Hiden

Mass spectrometry

Time-averaged, positive ions, $[M = C_3H_4O_2]$ (AA)

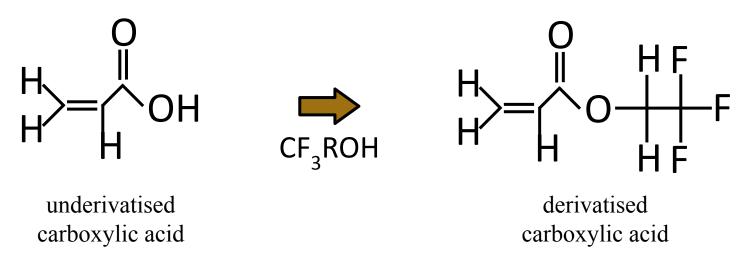


Mass spectrometry


Time-resolved

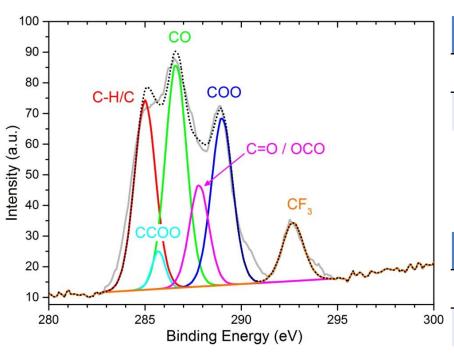
• Polymerisation between the pulse and $50\mu s$ to $75\mu s$ for heavy mass.

XPS for a 6µs on-time deposition


Measurement				
C=O / O-C-O	CCOO	CO	COO	C-H/C
11.3	1.1	29.3	19.75	38.55

Expected for pure PAA : [%]				
C=O / O-C-O	CCOO	СО	COO	C-H/C
0	33	0	33	33

Kratos Axis Ultra (Kratos, UK) with a monochromated Al $k\alpha$ source (1486.7 eV) using an emission current of 10 mA and an anode potential of 12 kV. High resolution C 1s scans use a pass energy of 20 eV.

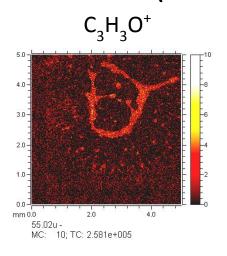

Trifluoroethanol derivatisation:

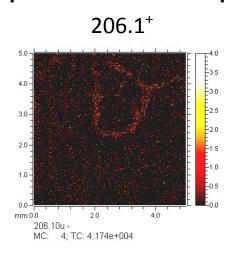
Percentage of carboxyl group (COOH) over all the other C group: 33%

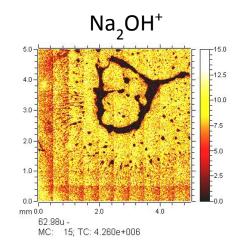
Retention: $\frac{[COOX]_{under}}{33} \bullet \frac{[CF_3]_{der}}{[COOX]} : 1 \bullet 1 = 100\%$

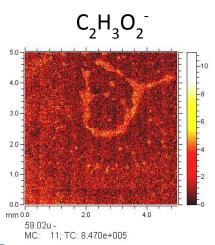
XPS for a 6µs on-time deposition

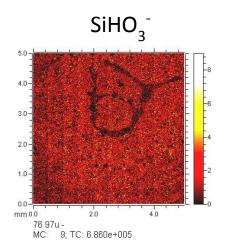
Measurement: [%]					
C=O /O-C-O	CCOO	СО	COO	C-H/C	CF ₃
13.94	3.16	29.75	22.05	23.97	7.13


$$[CF_3]/[COOX] = 0.323$$


Expected for	r pure PA	AA : [%]			
C=O / O-C-O	ССОО	СО	COO	C-H/C	CF ₃
0	20	20	20	20	20


Retention: $19.75/33 \cdot 0.323 = 19.33\%$




TOF-SIMS (on a 6µs on-time deposition)

Near-future

- + pulse signal
 - Using 2 frequencies: 5 kHz & 10 kHz
 - Using different duty cycle [5,10,25,45,50,75,90] %
 [10,25,50,75,90] %
- Continuous wave
 - Using different frequencies: 5, 5.5, 6.6, 10, 11.1,
 13.3, 20 kHz

Future - deposition

- Using the x-y stage (thank you MJ) to deposit homogenous coating
 - Measuring the coating ?
- Deposit on different substrate material: glass, plastic (polystyrene, acrylic), metal (aluminium, silicone)

Future - monomer

- Do similar experiments with different monomers:
 - Heptylamine, allylamine,
 - Styrene

