Steam Generation from Waste Heat

FHO Fachhochschule Ostschweiz

In cooperation with the CTI

Energy funding programme
Swiss Competence Centers for Energy Research

Schweizerische Eidgenossenschaf Confédération suisse Confederazione Svizzera Confederaziun svizra

Commission for Technology and Innovation CTI

Frédéric Bless

Handhout:

Steam Generation from Waste Heat

The literature is slowly growing

Results looking at "steam + heat pump"

The literature is slowly growing

Results looking at "steam + heat pump"

Hokkaido Bioethanol Co. Ltd.

Hokkaido Bioethanol Co. Ltd.

Hokkaido Bioethanol Co. Ltd.

High efficiency steam supply heat pump

Kobe Steel, Ltd.

Four units (normal operation)

One unit (back-up)

Steam pressure: 0.1MPa

Steam temperature : 120°C

Amount of steam: 0.51t/h/ unit

Heating capacity: 370kW/unit

COP: 3.5

Meito Sangyo Co., Ltd. (Methanol Distillation)

Steam production from heat pump technologies is coming

Cordin High Temperature Heat Pump

Ralph Kuster Semester-project

115°C Steam flow:

38.8 kg/h simulated

34.2 kg/h achieved

115°C Steam production efficiency:

115°C Steam production efficiency:

Ref.

115°C Steam production efficiency:

Ref.

Source: 40°C

115°C Steam production efficiency:

Ref.

Source: 40°C

Source: 60°C

115°C Steam production efficiency:

Ref.

Source: 40°C

Source: 60°C

Source: 105°C

There is a lack of steam compressors.

There is a lack of steam compressors.


```
V_{\rm F} [Nm³/h] \prod_{\rm P} [-] E_{\rm E} [kWh/t]
```


 $egin{array}{l} V_{
m F} \ \Pi_{
m P} \ E_{
m F} \end{array}$

 $egin{array}{c} \mathbf{V_F} \ \mathbf{\Pi_P} \ \mathbf{E_E} \end{array}$

>5000 2 80

 $egin{array}{c} V_{\mathrm{F}} \ \Pi_{\mathrm{P}} \ E_{\mathrm{E}} \end{array}$

>5000

80

 $egin{array}{l} \mathbf{V}_{\mathrm{F}} \ \mathbf{\Pi}_{\mathrm{P}} \ \mathbf{E}_{\mathrm{E}} \end{array}$

>5000 2

80

~2000

4.5

120

 $egin{array}{l} V_{F} \ \Pi_{P} \ E_{E} \end{array}$

>5000 2 80

 ~ 2000 4.5 120

 V_{F} \prod_{P} E_{E}

>5000 2 80

~2000 4.5 120 <1000 2 50

There is a lack of steam compressors.

>5K

 $V_{
m F} \ \prod_{
m P}$

H_P 2 E_E 80

4.5

120

<1K

2

50

There is a lack of steam compressors.

 V_{F} Π_{P} E_{F}^*

Technologies works but the lack of steam compressor is slowing this progression

H2020 application in progress

H2020 application in progress Eurostars application in progress

H2020 application in progress Eurostars application in progress InnoSuisse project planned

Were a doing an study on cycles comparaison

Were a doing an study on cycles comparaison

Goal is 150°C steam production.

Were a doing an study on cycles comparaison

1) High-temperature HP

2) Transcritial HP

3) Reversed Brayton HP

4) HTHP + MVR

5) Open-loop HP

COP is higher when MVR is used

Heat source temperature; η isentropic

COP for different cycle to produce 150°C Steam

Heat source temperature; η isentropic

COP at different state to produce 150°C Steam

Heat source temperature; η isentropic

COP at different state using transcritical R600 HP

Transcritical R600

COP at different state using R1233zd(E) HTHP

- □ Transcritical R600
- HTHP R1233zd(E)

COP at different state using reversed Brayton CO₂

- □ Transcritical R600
- HTHP R1233zd(E)
- Reversed Brayton R744

COP at different state using HTHP + 2 MVR

- Transcritical R600
- HTHP R1233zd(E)
- Reversed Brayton R744
- HTHP R1234ze(\mathbb{Z}) + 2MVR

Heat source temperature; η isentropic

COP at different state using open loop R718 HP

- □ Transcritical R600
- HTHP R1233zd(E)
- Reversed Brayton R744
- HTHP R1234ze(Z) + 2MVR
- Open Loop HP R718

Pressure difference for the different cycles

Pressure difference using transcritical R600 HP

Pressure difference using R1233zd(E) HTHP

Pressure difference using reversed Brayton CO₂

Heat source temperature; η isentropic

Pressure difference using HTHP + 2 MVR

Heat source temperature; η isentropic

Pressure difference using open loop R718 HP

Heat source temperature; η isentropic

COP and Pressure difference is best with MVR

Steam production from heat pump technologies is coming

Technologies works but the lack of steam compressor is slowing this progression

Study of different steam production cycles is ongoing

Handhout: